

METABOLISM AND FUNCTION

SECOND YEAR OF STUDY

The academic year 2025/2026.

Course title:
MEDICAL BIOCHEMISTRY
MEDICAL BIOCHEMISTRY The course is evaluated with 12 ECTS. There are 11 hours of active teaching classes per week (6 hours of lectures and 5 hours of practice).
The course is evaluated with 12 ECTS. There are 11 hours of active teaching classes per week (6
The course is evaluated with 12 ECTS. There are 11 hours of active teaching classes per week (6
The course is evaluated with 12 ECTS. There are 11 hours of active teaching classes per week (6
The course is evaluated with 12 ECTS. There are 11 hours of active teaching classes per week (6

TEACHERS:

No		E-mail address	Title
1.	Marina Mitrović	mitrovicmarina34@gmail.com	Full professor
2.	Ivanka Zelen	ivankazelen@gmail.com	Full professor
3.	Marijana Stanojević Pirković	marijanas14@gmail.com	Associate professor
4.	Ivana Nikolić	angelkg2009@gmail.com	Associate professor
5.	Milan Zarić	zaricmilan@gmail.com	Associate professor
6.	Marija Andjelković	marijabcd@gmail.com	Associate professor
7.	Petar Čanović	petar.c89@gmail.com	Associate professor
8.	Sanja Stanković	sanjast2013@gmail.com	Assistant professor

COURSE STRUCTURE:

Module	Module name	Weeks	Lectures	Practice	Teacher- module instructor
1	Enzymology. Energy metabolism 1 – carbohydrates.	6	6	5	
2	Energy metabolism 2 – ROS; lipids. Energy metabolism 3 – nucleic acids and proteins.	5	6	5	Prof. dr Marina Mitrović
3	Biochemistry of hormones, organs, tissues, integrative metabolism, and interpretations of biochemical parameters	4	6	5	
					Σ90+75=165

EVALUATION:

The grade is equivalent to the total points obtained (see tables). Points may be earned in two ways:

ACTIVITIES DURING THE TEACHING LESSONS AND ORAL FINAL EXAM:

ACTIVITIES: In this way, the student can gain up to 30 points:

During practical classes, the student answers two exam questions from that week of teaching classes and can earn 0-2 points. In this way, the student can gain up to 30 points. To pass the activity during the teaching lesson, the student must obtain more than 50% of the maximum total points.

FINAL ORAL EXAM: In this way, the student can gain up to 70 points:

In this way, the student can gain up to 70 points by answering one question from three different modules of the course. To pass the final oral exam, the student must answer all three questions in accordance with his/her knowledge and achieve more than 50% of the maximum total points provided for the final oral exam. A score of 0 on any question represents the end of the oral final exam. A student has the right to take the final oral exam if he/she has achieved more than 50% of the maximum points provided for the activity during the teaching lessons.

		MAXIMUM POINTS				
	MODULE	ACTIVITY	FINAL ORAL EXAM	Σ		
1	Enzymology. Energy metabolism 1 – carbohydrates.					
2	Energy metabolism 2 – ROS; lipids. Energy metabolism 3 – nucleic acids and proteins	20	70	100		
3	Biochemistry of hormones, organs, tissues, integrative metabolism, and interpretations of biochemical parameters	30	70			
	Σ	30	70	100		

THE FINAL GRADE IS FORMED AS FOLLOWS:

To pass the course, the student must obtain a minimum of 51 total points:

- 1. Pass the activities (more than 50% of the maximum total points)
- 2. Pass the final oral exam (more than 50% of the maximum total points)

number of points won	grade
0 - 50	5
51 - 60	6
61 - 70	7
71 - 80	8
81 - 90	9
91 - 100	10

LITERATURE:

Name of the textbook	authors	publisher	library
Marks' Basic Medical Biochemistry: A Clinical Approach 2nd Edition	Colleen M. Smith (Author), Allan D. Marks (Author), Michael A. Lieberman (Author), Dawn B. Marks (Author), Matthew Chansky	Lippincott Williams & Wilkins January 1, 2004	Electronic format
Biochemistry, 4 th edition	Reginald H. Garrett, Charles M. Grisham	Mary Finch, 2010	Electronic format
Harper's Illustrated Biochemistry, Twenty-Sixth Edition	Robert K. Murray, MD, PhD Daryl K. Granner, MD Peter A. Mayes, PhD, DSc Victor W. Rodwell, PhD	Lange Medical Books/McGraw-Hill Medical Publishing Division, 2003	Electronic format
Medical Biochemistry. 5th edition.	Baynes JW, Dominiczak MH.	Philadelphia: Elsevier; 2018.	Electronic format

The presentations for teaching lectures and accompanying documents in Word can be found on the website of the Faculty of Medical Sciences:www.medf.kg.ac.rs

Course units:

FIRST MODULE: ENZYMOLOGY. ENERGY METABOLISM 1 – CARBOHYDRATES.

TEACHING UNIT 1:

INTRODUCTION TO BIOCHEMISTRY; ENZYMOLOGY

Lecture - 6 classes	Practice -5 classes
Introduction to Biochemistry:	Introduction to Biochemistry: Introductory lecture: introduction to biochemistry,
Introductory lecture: introduction to biochemistry, biochemical organization of cells, and subcellular organelles. Water and bond types, hydrogen bond, concept of hydrophilicity and hydrophobicity. Enzymology: Chemical nature of enzymes, general principle and action of enzymes, kinetics of enzyme activity.	biochemical organization of cells, and subcellular organelles. Water and bond types, hydrogen bond, concept of hydrophilicity and hydrophobicity. Enzymology: Chemical nature of enzymes, general principle and action of enzymes, kinetics of enzyme activity.

TEACHING UNIT 2:

REGULATION OF ENZYME ACTIVITY; CLINICAL ENZYMOLOGY

Lecture - 6 classes

Enzymology:

Regulation of enzyme activity- mechanisms of activation and inhibition. Allosteric enzymes, clinically important enzymes, nomenclature, and classification of enzymes. Practice -5 classes

Enzymology.

Regulation of enzyme activity - mechanisms of activation and inhibition. Allosteric enzymes, clinically important enzymes, nomenclature, and classification of enzymes.

TEACHING UNIT 3:

VITAMINS AND COENZYMES

Lecture - 6 classes

Enzymology: Biochemistry of vitamins, hydrosoluble and liposoluble vitamins, enzyme cofactors, cosubstrates, and prosthetic groups.

Practice -5 classes

Enzymology: Biochemistry of vitamins, hydrosoluble and liposoluble vitamins, enzyme cofactors, cosubstrates, and prosthetic groups.

TEACHING UNIT 4:

GLYCOLYSIS. HEXO-MONOPHOSPHATE PATHWAY. OXIDATIVE DECARBOXYLATION OF PYRUVATE

Lecture - 6 classes

Practice -5 classes

Glycolysis. HMP pathway and PDH complex.

Digestion and absorption of carbohydrates. Glycolysis and the hexose-monophosphate pathway. Oxidative decarboxylation of pyruvate

Glycolysis. HMP pathway and PDH complex.

Digestion and absorption of carbohydrates. Glycolysis and the hexose-monophosphate pathway. Oxidative decarboxylation of pyruvate

KREBS CYCLE, OXIDATIVE PHOSPHORYLATION

Lecture - 6 classes

Krebs cycle. Oxidative phosphorylation.

Metabolism, anabolic and catabolic processes. Sources and fate of acetyl-CoA and the Krebs cycle. Oxido-reduction processes, energy-rich compounds, respiratory chain, synthesis of ATP. Practice -5 classes

Krebs cycle. Oxidative phosphorylation.

Metabolism, anabolic and catabolic processes. Sources and fate of acetyl-CoA and the Krebs cycle. Oxidoreduction processes, energy-rich compounds, respiratory chain, synthesis of ATP.

TEACHING UNIT 6:

CARBOHYDRATES: GLUCOSE AND GLYCOGEN

Lecture - 6 classes

Practice -5 classes

Carbohydrate metabolism:

Glycogen metabolism - glycogenolysis and glycogenesis. Gluconeogenesis.

Carbohydrate metabolism:

Glycogen metabolism - glycogenolysis and glycogenesis. Gluconeogenesis.

SECOND MODULE: ENERGY METABOLISM 2 – ROS; LIPIDS. ENERGY METABOLISM 3 – NUCLEIC ACIDS AND PROTEINS.

TEACHING UNIT 7:

ROS AND ANTIOXIDANT PROTECTION

Lecture - 6 classes

Practice -5 classes

ROS and antioxidant protection.

The mechanism of formation of reactive oxygen species. Biomacromolecule damage mediated by ROS action. Antioxidants and antioxidant protection.

ROS and antioxidant protection.

The mechanism of formation of reactive oxygen species. Biomacromolecule damage mediated by ROS action. Antioxidants and antioxidant protection.

TEACHING UNIT 8:

LIPID METABOLISM

Lecture - 6 classes

Lipid metabolism. Digestion and absorption of lipids. β -oxidation of fatty acids; ketone bodies. Oxidation of fatty acids with an odd number of carbon atoms. Oxidation of fatty acids with unsaturated bonds. ω -oxidation. α - oxidation. Synthesis of fatty acids and triacylglycerols.

Practice -5 classes

Lipid metabolism. Digestion and absorption of lipids. β-oxidation of fatty acids; ketone bodies. Oxidation of fatty acids with an odd number of carbon atoms. Oxidation of fatty acids with unsaturated bonds. ω -oxidation. α - oxidation. Synthesis of fatty acids and triacylglycerols.

TEACHING UNIT 9:

CHOLESTEROL AND LIPOPROTEINS

Lecture - 6 classes

Cholesterol and lipoproteins: Synthesis of cholesterol, bile acids, and complex phospholipids. Transport of lipids - lipoproteins of blood plasma.

Practice -5 classes

Cholesterol and lipoproteins: Synthesis of cholesterol, bile acids, and complex phospholipids. Transport of lipids - lipoproteins of blood plasma.

TEACHING UNIT 10:

NUCLEIC ACIDS METABOLISM

Lecture - 6 classes

Nucleic acids: Catabolism and anabolism of nucleotides and nucleic acids; purine and pyrimidine metabolism.

Practice -5 classes

Nucleic acids: Catabolism and anabolism of nucleotides and nucleic acids; purine and pyrimidine metabolism.

TEACHING UNIT 11:

AMINO ACIDS AND PROTEINS METABOLISM

Lecture - 6 classes

Amino acids and proteins: Digestion and absorption of proteins. Catabolism of amino acids (transamination, oxidative deamination, ammonia metabolism). Urea synthesis, glutamine synthesis. Non-protein nitrogenous compounds. Protein synthesis, regulation of protein synthesis.

Practice -5 classes

Amino acids and proteins: Digestion and absorption of proteins. Catabolism of amino acids (transamination, oxidative deamination, ammonia metabolism). Urea synthesis, glutamine synthesis. Non-protein nitrogenous compounds. Protein synthesis, regulation of protein synthesis.

THIRD MODULE: BIOCHEMISTRY OF HORMONES, ORGANS, TISSUES; INTEGRATIVE METABOLISM, AND INTERPRETATIONS OF BIOCHEMICAL PARAMETERS

TEACHING UNIT 12:

BIOCHEMISTRY OF HORMONES

Lecture - 6 classes

Practice -5 classes

Biochemistry of hormones: chemical structure, synthesis, transport, mechanism of action.

Biochemistry of hormones: chemical structure, synthesis, transport, mechanism of action

TEACHING UNIT 13:

METABOLISM OF WATER AND ELEMENTS; TISSUES

Lecture - 6 classes

Practice -5 classes

Metabolism of water and elements. Metabolism water and elements, inorganic substances – minerals; Tissues; Liver.

Metabolism of water and elements. Metabolism water and elements, inorganic substances – minerals; Tissues; Liver.

TEACHING UNIT 14:

INTEGRATIVE METABOLISM

Lecture - 6 classes

Practice -5 classes

Integrative metabolism: The relationship between the metabolism of carbohydrates, lipids, and amino acids **Integrative metabolism:** The relationship between the metabolism of carbohydrates, lipids, and amino acids

TEACHING UNIT 15:

INTERPRETATIONS OF BIOCHEMICAL PARAMETERS.

Lecture - 6 classes

Practice -5 classes

Clinical and laboratory interpretations of biochemical parameters.

Clinical and laboratory interpretations of biochemical parameters.

Module	week	type	Teaching unit name	Teacher
1	1	L	INTRODUCTION TO BIOCHEMISTRY. ENZYMOLOGY	Prof. dr Marina Mitrović
1	1	P	INTRODUCTION TO BIOCHEMISTRY. ENZYMOLOGY	Prof.dr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
1	2	L	REGULATION OF ENZYME ACTIVITY; CLINICAL ENZYMOLOGY	Prof. dr. Marija Andjelković
1	2	P	REGULATION OF ENZYME ACTIVITY; CLINICAL ENZYMOLOGY	Prof.dr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
1	3	L	VITAMINS AND COENZYMES	Prof. dr Marina Mitrović
1	3	P	VITAMINS AND COENZYMES	Prof.dr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
1	4	L	GLYCOLYSIS. HEXO-MONOPHOSPHATE PATHWAY. OXIDATIVE DECARBOXYLATION OF PYRUVATE	Prof. dr Ivana Nikolić
1	4	P	GLYCOLYSIS. HEXO-MONOPHOSPHATE PATHWAY. OXIDATIVE DECARBOXYLATION OF PYRUVATE	Prof. dr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic

module	week	type	Unit name	teacher
1	5	L	KREBS CYCLE. OXIDATIVE PHOSPHORYLATION	Prof. dr Ivana Nikolić
1	5	P	KREBS CYCLE. OXIDATIVE PHOSPHORYLATION	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
1	6	L	GLYCOGENESIS. GLYCOGENOLYSIS. GLUCONEOGENESIS	Prof. dr Milan Zarić
1	6	P	GLYCOGENESIS. GLYCOGENOLYSIS. GLUCONEOGENESIS	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
2	7	L	ROS. ANTIOXIDANTS	Prof. dr Ivanka Zelen
2	7	P	ROS. ANTIOXIDANTS	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
2	8	L	LIPID METABOLISM	Prof. dr Ivanka Zelen
2	8	P	LIPID METABOLISM	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric

				Prof. dr Marija Andjelkovic Prof. dr Petar Canovic
	0	_		Prof. dr Sanja Stankovic
2	9	L	CHOLESTEROL AND LIPOPROTEINS	Prof. dr Milan Zarić
module	week	type	Unit name	teacher
2	9	P	CHOLESTEROL AND LIPOPROTEINS	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
2	10	L	NUCLEIC ACIDS METABOLISM	Prof. dr Sanja Stanković
2	10	P	NUCLEIC ACIDS METABOLISM	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
2	11	L	AMINO ACIDS AND PROTEINS METABOLISM	Prof. Dr. Petar Čanović
2	11	P	AMINO ACIDS AND PROTEINS METABOLISM	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
3	12	L	BIOCHEMISTRY OF HORMONES	Prof. Dr Marija Andjelković
3	12	P	BIOCHEMISTRY OF HORMONES	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic

3	13	L	METABOLISM OF WATER AND ELEMENTS; TISSUES	Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic Prof. Dr. Petar Čanović
module	week	type	Unit name	teacher
3	13	P	METABOLISM OF WATER AND ELEMENTS; TISSUES	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
3	14	L	INTEGRATIVE METABOLISM	Prof. dr Marijana Stanojević Pirković
3	14	P	INTEGRATIVE METABOLISM	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic
3	15	L	CLINICAL AND LABORATORY INTERPRETATIONS OF BIOCHEMICAL PARAMETERS.	Prof. dr Marijana Stanojević Pirković
3	15	P	CLINICAL AND LABORATORY INTERPRETATIONS OF BIOCHEMICAL PARAMETERS	Profdr Marina Mitrovic Prof. dr Ivanka Zelen Prof. dr Marijana Stanojevic Pirkovic Prof. dr Ivana Nikolic Prof. dr Milan Zaric Prof. dr Marija Andjelkovic Prof. dr Petar Canovic Prof. dr Sanja Stankovic

QUESTIONS FOR THE FINAL ORAL EXAM:

A (one question is drawn) - From the first module

- 1. Water and types of chemical bonds. Hydrophilicity and hydrophobicity.
- 2. Chemical nature of enzymes. General principles of enzyme activity. Kinetics of enzymatic activity.
- 3. Main classes of biomolecules and their basic properties
- 4. Types of enzyme inhibition
- 5. Regulation of enzyme activity. Polysynthetic regulation
- 6. Classification and nomenclature of enzymes
- 7. Oxidoreductases and transferases
- 8. Hydrolases and lyases
- 9. Isomerases and ligases
- 10. Functional and non-functional blood plasma enzymes
- 11. Transaminases (AST and ALT)
- 12. γ-glutamyl transferase
- 13. Lactate dehydrogenase
- 14. Alkaline and acid phosphatase
- 15. Liposoluble vitamins
- 16. B complex vitamins as cofactors in enzymatic reactions: niacin and riboflavin
- 17. The role of coenzymes for the transfer of phosphate groups in enzymatic reactions. Vitamin B12 and folic acid.
- 18. Enzyme complexes of the respiratory chain.
- 19. ATP synthase, synthesis, and the release of newly synthesized ATR from mitochondria. P/O ratio in the respiratory chain.
- 20. Free radicals. Oxygen free radicals (reactive oxygen species).
- 21. Places of production of oxygen free radicals. Tissue damage caused by free radicals (ROS).
- 22. Nitrative stress
- 23. Enzymatic antioxidants
- 24. Non-enzymatic antioxidants
- 25. Digestion and absorption of carbohydrates
- 26. Glycolysis: phases, reactions, regulation, energy balance
- 27. Pentose phosphate pathway
- 28. Glycogenesis
- 29. Glycogenolysis

- 30. Gluconeogenesis
- 31. Oxidative decarboxylation of pyruvate
- 32. Krebs cycle

B (one question is drawn) - From the second module

- 1. Beta oxidation of fatty acids
- 2. Fatty acids and lipid digestion
- 3. Ketone bodies
- 4. Synthesis of fatty acids
- 5. Cholesterol
- 6. Bile acids
- 7. Phospholipids
- 8. Lipoproteins. Chylomicrons
- 9. VLDL, LDL, and HDL lipoproteins
- 10. Catabolism of nucleic acids and nucleotides. Catabolism of AMP and GMP
- 11. Catabolism of nucleic acids and nucleotides. Catabolism of pyrimidines
- 12. De novo synthesis of purine nucleotides
- 13. Biosynthesis of pyrimidine nucleotides
- 14. Digestion and absorption of proteins
- 15. Gamma-glutamyl cycle
- 16. Transamination and oxidative deamination
- 17. Glutamate-dehydrogenase
- 18. Urea synthesis
- 19. Regulation of the urea cycle. Glutamine. Creatine and creatinine.
- 20. Amino acids. Division of amino acids.
- 21. Eukaryotic translation
- 22. Protein structure. Properties of peptide bonds.

C (one question is drawn) – From the third module

- 1. Types of hormones and their basic characteristics
- 2. Secondary messengers
- 3. Steroid hormones

- 4. Control of hormone secretion
- 5. Hormones of the adrenal medulla
- 6. Thyroid hormones
- 7. Insulin
- 8. Glucagon
- 9. Macroelements
- 10. Copper, zinc, and selenium
- 11. Liver functions
- 12. Metabolism of ethanol in the liver
- 13. Hemoprotein metabolism
- 14. The fed and absorptive state
- 15. State of starvation (fasting)
- 16. Diabetes mellitus. Hypoglycemia
- 17. Non-protein nitrogen compounds
- 18. Acute phase reactants
- 19. Hyperbilirubinemia
- 20. Proteinuria